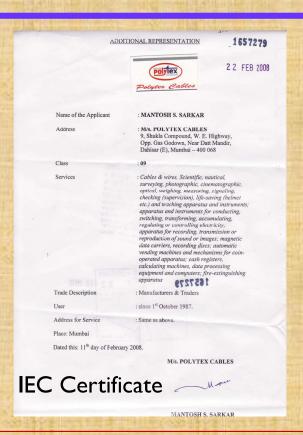


AN ISO 9001: 2000 CERTIFIED COMPANY


Products Range:

- Screen / Shielded Cables
- Instrumentation Cables
- Signal Cables
- Fire alarm security **Cables**

- **PCM Cables**
- Compensating Cables
- Coaxial Cables
- Armoured / Unarmoured Cables

CABLE WITH TOTAL QUALITY ASSURANCE

सालक चिन्ह	वस्तु/प्रसंस्करण	भारतीय गानक
STANDARD MARK (I)	ARTICLEPROCESS (2)	INDIAN STANDARD(S) (3)
IS 604 CM/L-7952191	निमन तामान विचारियों और बाह्य उपयोग को छोड़कर 1100 गोल्ट एक एवं जीवित कार्रकारी गोल्टता के विश् विकार मुक्किरी गील पातक विचार के विश् विकार मुक्किरी गील पातक विचार कार्यकार के प्रीचित वार्यविश्व निमान कार्यकार के प्रीचित कार्यविश्व कार्यविश्व कार्यविश्व कार्यविश्व विश्व विश्व कार्यकार के भी गिर्म (विश्व कार्यकार) और विश्व विश्व कार्यकार के भी गील (विश्व कार्यकार) कार्यकारिया गी भी शी	ष्म् मा 694 : 1990 1100 को तब सर्व शहित वार्यकारी बोराटन के दिन यो भी भी प्रेक्षा केवल
	Unamoured PVC insulated cables for working voltages upto and including 1100V of single-multi-core, aluminium/copper conductor, fixed wiring/flexible cables, unsheathed/sheathed, category 01 sizes upto and including 50 sq. mm (single core) and 240 sq. mm (multi-core), excluding cables for fow temperature conditions and outdoor use	IS 694: 1990 PVC Insulated cables for workin voltages upto and including 1100 V

IS 694 Certificate

	प्रथम THE FIRST SCHEDULE	
मात्रक चिन्द	वस्त्/पस्स्वस्ण	आरटीय आलम
STANDARD MARK	ARTICLE PROCESS (2)	INDIAN STANDARD(5)
(1) IN 1554 Fart I CMCL-7948406	1100 वो तक एवं शहित कार्यकारी वोस्ता के लिए पी थी भी शीधा हैवी कहुदी विद्युत केवल निम्न रायपान अपूरणोगे और खरानी, जन्मत औन- निम्मादन पार्च केवल और वी. 177-र 2 को अंक्रक विद्युत आर्थी और सिमात महानेत आर्थीय, अन्तरीकि विद्युतारोगे पार्च पुर कार्य द्यादा एस्टी-1, 50वी मिनो एवं गहित आकार के सहस्त्री और 15 का थी मिनो पिरस कोर एस्ट्रीमीयम/शाम पार्चक स्तारत निमंत्रन प्रयोजना के तिर विद्युतारोगी और कार्यकार केवल में	मा पा 1554 (नाम 1) - 1988 1100 मा पा बार्यकारी जीवदार के लिए दी सी दीवित (हैंबीक्स्-ट्री) विवादा मेजन दी सी दिवत (हैंबीक्स-ट्री) विवादा मेजन हो 1555 (Part I : 1988. PVC insulated (heavy inty) selectifs on
	wording volunges upto and including 11007— invalidated and statembel calleds for electric unprely and control purposes of single-traili- nore, arrasementarinamenter, installed regards, sheath type STI, also spits and factioning on agrain (antifection) of 15% on one calculating and the control of 15% of the calculating and the control of 15% of the calculating to the control of 15% of the calculating to the control of 15% of the calculating the control of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% of 15% o	PvC I from writing volumes ago the writing volumes ago including 1100 V

IS 1554 Certificate

Table of Contents

INTRODUCTION

About Us
Quality Policy
Vision
Mission

INFRASTRUCTURE

Machines Production

PRODUCTS

Screen / Shielded Cables
Instrumentation Cables
Signal Cables
Fire alarm security Cables
PCM Cables
Compensating Cables
Coaxial Cables
Armoured / Unarmoured Cables

INTRODUCTION

About Us:

Established in 1987, "POLYTEX CABLES" is the leading brand in cables, especially in screen / shielded Cables. We have made an impression throughout the industrial verticals with our various range in cables....i.e., Screen / Shielded Cables

Instrumentation Cables, PCM Cables, Compensating Cables, CCTV Cables, Coaxial Cables, Telephone Cables. We started with a vision to revolutionize the industry by offering a quality cable at a competitive price. The combination of cutting edge technology & proactive client services has helped us to meet the exact requirement of our client as per the industry standards. We are making huge investments in product innovation, development, technological up gradation & quality control to spread our wings.

Our dedication towards "Customer Satisfaction" and "Stringent Quality Control" had made **POLYTEX** a reliable name in the industry.

Quality Policy:

Planning:

Keeping in mind "Total Quality Assurance".... we produce products on customer needs and expectations. We are constantly updating ourselves on changing the technological trends to face the global challenges. Utmost Care is taken to see that only the best raw material goes in making all **POLYTEX** products.

We have a team of dedicated technicians who are committed to do their best, promising that only the best finished product reaches our valued customers.

VISION:

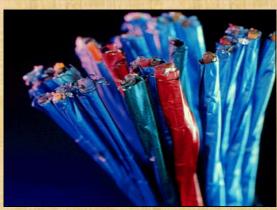
Our vision has always been to provide the most reliable and productive solution to the day-to-day demand, at a price that gives the value to all our customers.

MISSION:

Maintain the quality standards to strengthen the brand for customer satisfaction.

INFRASTRUCTURE:

Manufacturing:


The only intention of us is to deliver high-quality product and services to our customer. We follow a universal policy throughout the process from taking order till dispatch for each and every customer. Not only we deliver a high quality product but also maintain a strict time regime. To maintain this we are making huge investments in technological upgradation and quality control.

Production:

Our production decision focus on what goods to produce, how to produce, the cost of producing them etc.....This information is compared with the market information which helps us to quantify the production, to generate a marginal revenue for "optimal pricing", resulting a high quality cable at competitive rates.

PRODUCTS:

Screen / shielded cables:

We are one of the leaders in the market for screen / shielded cables. We provide both copper braided or aluminum mylar with 0.5 sq mm drain wire type, as per the requirement.

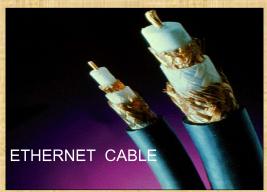
Purpose of Shielding

Shielding protects the signal from external interference, cable contains electrical energy so that the signal on the cable does not radiate and interfere with the signals in the nearby cables and circuitry. We provide minimum 75% shielding coverage in Copper braiding and with 50% overlap providing 100% coverage in Aluminum Mylar type for better results.

Braided shield are more effective at low frequency i.e.... for EMI.

Foil shield are more effective at high frequencies i.e... for RFI.

Benefits of POLYTEX Screen Cables:


- Improved Attenuation.
- Improved Power Sum Crosstalk.
- Less noise interference.

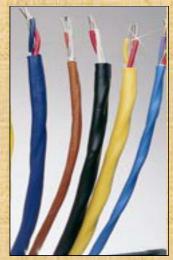
POLYTEX CABLES has specialized in INSTRUMENTATION Pair Cables (individual / Overall). As frequency increases, Near End Cross Talk increases Exponentially.

POLYTEX screen cables are widely used in secure communication, high concentration of electrical equipments, industrial factory floor etc....

Our manufacturing range of cables are from 0.5 sq mm till 25 sq mm. Both UNARMOURED & ARMOURED cable.

ELECTRICAL		CABLE TYPE	
PARAMETERS	RG 11F	RG 6F	RG 59F
Center conductor			
(Max. resistance at 20°)	0.85 ohm/100 mtr.	2.14 ohm/100 mtr.	3.55 ohm/100 mtr.
Nom. Capacitance (PF/Mtrs.)	53 ± 3	53 ± 3	53 ± 3
Characteristics			
Impedance (Ohms)	75±3	75 ± 3	75 ± 3
Nom. Velocity Ratio (%)	85	85	85
Attenuation @ 20°c			
(db/100 Mtrs.) at			76
5 MHz	1.25 db	1.95 db	2.82 db
55 MHz	3.15 db	5.20 db	6.73 db
211 MHz	6.23 db	9.50 db	12.47 db
250 MHz	6.72 db	10.50 db	13.45 db
300 MHz	7.38 db	11.50 db	14.60 db
350 MHz	7.94 db	12.45 db	15.75 db
400 MHz	8.53 db	13.30 db	16.73 db
450 MHz	9.02 db	14.35 db	17.72 db
550 MHz	9.97 db	15.70 db	19.52 db
600 MHz	10.43 db	16.45 db	20.34 db
750 MHz	11.97 db	18.35 db	22.87 db
865 MHz	13.05 db	19.95 db	24.67 db
1000 MHz	14.27 db	21.45 db	26.64 db

Coaxial Cables:


We have wide range of coaxial cables namely RG 6, RG 8, RG 11, RG 58, RG 59, RG 62, Ethernet Cables, CCTV Cables for the application in CATV network...

The conductor used are of electrolytic grade 99.9% pure copper for better signal transmission. The accurate percentage of Copper braiding ensure low less in signal quality for better reception, Provides higher bandwidth, low attenuation value.

At **POLYTEX** armoured Cables can also be supplied for underground application.

CONSTRUCTION		CABLE TYPE	
PARAMETERS	RG 11F	RG 6F	RG 59F
CENTER CONDUCTOR	Solid bare copper	Solid bare copper	Solid bare copper
Nom. Dia. (mm)	1.63	1.02	0.80
DIELECTRIC	Foam PE	Foam PE	Foam PE
Nom. Dia. (mm)	7.11	4.57	3.55
OUTER CONDUCTOR			
1st Shield	Al-Foil Bonded	Al-Foil Bonded	Al-Foil Bonded
2nd Shield	Al-Alloy Braiding	Al-Alloy Braiding	Al-Alloy Braiding
Min. Coverage (%)	60	60	60
Flooding Compound	Jelly	Jelly	Jelly
JACKET	PVC Black	PVC Black	PVC Black
Nom. Dia. (mm)	10.30	7.25	6.20
BENDING RADIUS (mm)	70	60	60

Compensating Cables:

A thermocouple is a sensor for measuring temperature. It consists of two different metals, which is heated or cooled, a voltage is generated that can be measured to the temperature. A thermocouple is available in different combination of metals or calibration.

The four most common Calibrations are J, K, T & E Type. Although the thermocouple calibration dictates the temperature range, the maximum range is also limited, by the diameter of the thermocouple wire i.e. a very thin thermocouple may not reach the full temperature. And we at **POLYTEX** do take care of it.

Common Thermocouple Temperature Ranges										
Calibration	Temp Range		Std. Limits of Error	s	pec. Limits of Erro					
J	0°C to 750°C (32°F to 1382°F)	ŀ	Greater of 2.2°C or 0.75%	H	Greater of 1.1°C or 0.4%					
K	-200°C to 1250°C (-328°F to 2282°F)	ŀ	Greater of 2.2°C or 0.75%	H	Greater of 1.1°C or 0.4%					
E	-200°C to 900°C (-328°F to 1652°F)	ŀ	Greater of 1.7°C or 0.5%	H	Greater of 1.0°C or 0.4%					
T	-250°C to 350°C (-328°F to 662°F)	i	Greater of 1.0°C or 0.75%	H	Greater of 0.5°C or 0.4%					

	ANSI Code		Thermocouple Extension		Alloy Combination + Lead — Lead		E				Maximum T/C Grade Temp. Range	EMF (mV) Over Max. Temp. Range		and the state of t	IEC Code
	J	6 +		IRON Fe (magnetic)	CONSTANTAN COPPER- NICKEL Cu-Ni	Reducing, Vacuum, Inert. Limited Use in Oxidizing at High Temperatures. Not Recommended for Low Temperatures.	-210 to 1200°C -346 to 2193°F	-8.095 to 69.553	\$ -	3 +	J				
Steel Steel	K	**************************************	**	CHROMEGA® NICKEL- CHROMIUM Ni-Cr	ALOMEGA® NICKEL- ALUMINUM Ni-Al (magnetic)	Clean Oxidizing and Inert. Limited Use in Vacuum or Reducing. Wide Temperature Range, Most Popular Calibration	-270 to 1372°C -454 to 2501°F	-6.458 to 54.886	\$\frac{1}{2}\text{\$\frac{1}{2}}\	\$\frac{1}{2} \text{\$\frac{1}{2}} \$\frac{	K				
	T	*-	*	COPPER Cu	CONSTANTAN COPPER- NICKEL Cu-Ni	Mild Oxidizing, Reducing Vacuum or Inert. Good Where Moisture Is Present. Low Temperature & Cryogenic Applications	-270 to 400°C -454 to 752°F	-6.258 to 20.872	4	6					
	E	*-	-	CHROMEGA® NICKEL- CHROMIUM Ni-Cr	CONSTANTAN COPPER- NICKEL Cu-Ni	Oxidizing or Inert Limited Use in Vacuum or Reducing. Highest EMF Change Per Degree	-270 to 1000°C -454 to 1832°F	-9.835 to 76.373	(F)-	G-	iii				

PCM Cables:

POLYTEX have specialized in PCM Cables. This are pair Cables use majorly in mobile Communication antenna installation. The TIN Copper Conductor used of 0.51 mm size is electrolytic type i.e. 99.9% purity. As well the pairing done is close and uniform through out the length to provide better transmission. We provide 80-85 % of braiding coverage.

Due to this precise construction **POLYTEX** PCM cables are more preferred brand in the market for mobile technology.

Armoured Cables can also be supplied for underground application.

Tailor-made Cables:

POLYTEX been in the market for so many decade we under stand the customers and there requirement. With our technical expertise we can construct any kind of cable in PVC within our manufacturing range.

For Example:

The picture beside is as described

Four different colour inner consisting of different size core i.e.

I)Black inner: I.0 Sqmm Single core screened. 2) Grey inner: I.0 Sqmm two core screened. 3)Blue inner: 0.5 Sqmm two core screened. 4)Red inner: I.5 Sqmm two core screened.

This four inner are stranded together and over all screened and Coated with PE material.

The customers required this for under water equipment.

Special Cables:

We at **POLYTEX** are self reliant in manufacturing cables with new design in PVC Compound Till 28 mm Cable Size.

We are also well verse with how to produce FRLS CABLES, H R CABLES, F R CABLES.

Any of the Cables described in the catalog can be made into FRLS, FR,HR.

Small test Specification of FRLS PVC:

TEST REPORT FOR FRLS

Properties	Method	Units	Results
Specific Cleaily	ASTMD 792	_	1.58
Hardnessafte 15 sec.	ASIMD2240	Shore A	89
Thermal Stability @ 200°C	/ IS5831	Min.	98
Volume Resistivity	ASTMD 257	*10 ¹⁴ ohmse	c 2.7
Tensile strength	IS 10810 Part7	Kg/cm2	13.5
Hongation at Break	IS 10810 Part7	%	190
SDR avg.	ASTMD 2863	%	59
SDRpeak	ASTMD 2863	%	80
LOI	ASTMD 2843	%	30
HCL Emission	IEC 754 Part 1	%	18

For Physical dimension

Lab Equipments

: a) Micrometer.

b) Vernier Caliper.

c) Travelling Microscope.

For Tensile Strength

For Elongation

For HV test

For Heat Shock test

For Conductor resistance

For Ageing test

For Hot Deformation test

For Flammability test

Other Apparatus

: Tensile testing M/c 12.5 N/mm² min.

: Scale 0- 300 mm.

: AC - 0-6 KW.

DC — 0- 1.5 KW.

Water bath with heater & thermostat.

: Mandrel.

: Digital mega ohm meter.

: Aging Oven (temp. upto 135° C ±2°C).

: Hot air Oven (temp. upto 250°C ± 2°C).

: Flammability test Chamber.

: Weighing Balance.

Dumbell cutter.

Spark tester.

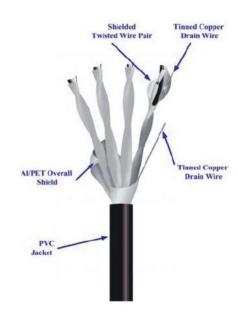
Thermal Stability test apparatus.

Individual and Overall Shielded Instrumentation Cables per BS 5308 Part 1 Type 1

APPLICATIONS

- For cable tray installation in intrinsically safe environment.
- For transmission of analog or digital signals designed for process control

STANDARDS


BS 5308 Part 1, Type 1

CONSTRUCTION

Conductor:	Stranded annealed bare copper complying with BS 5308 Part 1
Insulation:	Polyethylene complying with BS 6234 Type 03 with a radial thickness of 0.6 mm
Pairs:	Two cores are twisted into pairs in nominal lays of 50 to 60 mm
Color Code:	Black / white with successive numbers, or per color code conforming to BS 5308 Part 1
Individual Shielding:	Each pair is individually shielded with a polyester/aluminum (AL/PET) foil, aluminum side facing inwards; 125% coverage
Pair drain Wire:	0.5 mm ² tinned copper
Cabling:	The pairs are cabled into a cable core
Overall Shielding:	Shielded with a polyester/aluminum (AL/PET) foil, aluminum side facing inwards. 100% coverage.
Overall drain wire:	0.5 mm ² tinned copper
Outer jacket:	Black FR PVC complying with BS 6746 Type 6 or Type TM1

RATING

- Operating temperature range -10°C to 90°C
- 300 Vrms 90°C
- Fire retardancy per IEC 60332-1, UL-1581 VW-1
- Cables meeting IEC-60332-3C are available

ELECTRICAL PROPERTIES

Max. DC Resistance @ 20°C:

0.5 mm² - 39.7 Ohm/km 0.75 mm² - 26.5 Ohm/km 1.0 mm² - 18.5 Ohm/km 1.5 mm² - 12.3 Ohm/km

Mutual capacitance @ 25°C/1kHz:

115 pF/m

Dielectric Strength:

Insulation - 2000 Vdc / 1 min. between conductors Sheath - 5000 Vdc / 1 min

MARKING

Cables are marked as follows:

THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION

Individual and Overall Shielded Instrumentation Cables per BS 5308 Part 1 Type 1

Cable Construction, Dimensions and Weights

Sequential No.	Size mm²	Pairs = P Triads = T	No. of Pairs /Triads	Radial Thickness Sheath mm	Cable Nominal Diameter mm	Cable Nominal Weight kg/km
1	0.5	P	1	0.9	6.4	52
2	0.5	Р	2	1.1	11.2	103
3	0.5	Р	5	1.2	14.5	193
4	0.5	Р	10	1.3	20.3	340
5	0.5	P	15	1.5	23.8	488
6	0.5	Р	20	1.5	26.5	613
7	0.5	Р	24	1.7	29.9	746
8	0.75	P	1	0.9	6.8	59
9	0.75	Р	2	1.1	12.0	118
10	0.75	Р	5	1.2	15.6	225
11	0.75	Р	10	1.3	22.0	403
12	0.75	Р	15	1.5	25.8	583
13	0.75	Р	20	1.7	29.1	763
14	0.75	Р	24	2.0	33.0	940
15	1.0	P	1	0.9	7.2	66
16	1.0	Р	2	1.1	12.7	132
17	1.0	Р	5	1.2	16.5	258
18	1.0	Р	10	1.3	23.3	467
19	1.0	P	15	1.5	27.3	675
20	1.0	р	20	1.7	30.8	887
21	1.0	P	24	2.0	35.0	1092
22	1.5	Р	1	0.9	7.8	80
23	1.5	Р	2	1.2	14.1	167
24	1.5	Р	5	1.3	18.3	327
25	1.5	Р	10	1.5	26.1	610
25	1.5	Р	15	1.7	30.5	880
27	1.5	Р	20	1.7	34.0	1225
28	1.5	Р	24	2.0	38.6	1380

All cable dimensions and weights are subject to normal manufacturing tolerances.

THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION

AS per IS 694 specs for Single Core

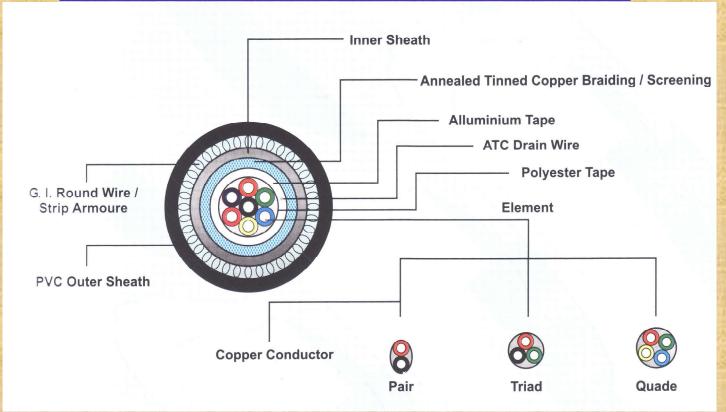
CONTROL OF THE REAL PROPERTY.	- mH-1	WIROSON			CONTRACTOR OF THE PARTY	Annobal In				BISSON BRIDE		
Current Rating In Amp.	170	210	235	295	330	400	475	550	635	725	840	950
Cable Dia (Approx.)	15.5	18.5	20.9	22.5	24.6	27.6	32.2	35.7	38.0	45.5	51.0	53.0
Insulation Thickness in mm Nominal	1.6	1.8	2.0	2.0	2.2	2.2	2.4	2.6	2.8	3.0	3.4	3.4
Max DC Resistance Ohm/Km At 20°C	0.272	0.206	0.161	0.129	0.106	0.0801	0.0641	0.0486	0.0384	0.0287	0.0224	0.0178
Conductor Dia. In mm	12.30	14.70	16.70	18.30	20.00	23.00	27.20	30.50	32.00	39.00	44.00	46.00
Conductor Construc- tion in General	360/0.50	485/0.50	608/0.50	750/0.50	925/0.50	1221/0.50	1527/0.50	2036/0.50	2540/0.5	3200/0.5	4100/0.5	5100/0.5
Area in Sq. mm	70	92	120	150	185	240	300	400	200	630	800	1000
Current Rating in Amp.	4	7	11	14	19	26	33	45	60	75	92	125
Cables Dia (Approx.)	2.20	2.50	2.60	2.90	3.50	4.30	5.30	6.70	8.20	10.00	11.3	13.5
Insulation Thickness in mm Nominal	09.0	09'0	09'0	09'0	0.70	0.80	0.80	1.00	1.00	1.20	1.20	1.40
Max. DC Resistance Ohm/Km At 20°C	39.00	26.00	19.50	13.30	7.98	4.95	3.300	1.910	1.210	0.780	0.554	0.386
Cond. Dia. in mm	0.94	1.20	1.34	1.64	2.08	2.61	3.50	4.60	6.00	7.60	8.70	10.60
Conductor Construc- tion in General	16/0.20	24/0.20	32/0.20	*30/0.25	**50/0.25	56/0.30	84/0.30	140/0.30	126/0.40	196/0.40	276/0.40	396/0.40
Area in Sq. mm	0.50	0.75	1.00	1.50	2.50	4.00	9.00	10.00	16.00	25.00	35.00	50.00

THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION

AS per IS 694 specs for Multi-Core

Area So	ą. MM	0.50	0.75	1.00	1.50	2.50	4.00				
Genera	Construction no./dia	16/0.2	24/0.2	32/0.2	*30/0.25	**50/0.25	56/0.3				
Conduc	tor Dia in MM	0.94	1.20	1.34	1.64	2.08	2.61				
Avg. Ins	su. thickness in MM	0.60	0.60	0.60	0.60	0.70	0.80				
Core D	a in MM	2.20	2.50	2.60	2.90	3.50	4.30				
No. of Cores											
6	Avg. Sheath thickness MM	0.90	1.00	1.00	1.00	1.10	1.20				
	App. Overall Dia MM	8.50	9.50	9.80	10.70	12.70	15.30				
7	Avg. Sheath thickness MM	0.90	1.00	1.00	1.00	1.10	1.20				
	App. Overall Dia MM	8.50	9.50	9.80	10.70	12.70	15.30				
8	Avg. Sheath thickness MM	1.00	1.00	1.00	1.10	1.20	1.30				
	App. Overall Dia MM	9.30	10.40	10.70	11.90	14.10	16.90				
10	Avg. Sheath thickness MM	1.00	1.10	1.10	1.10	1.30	1.40				
	App. Overall Dia MM	10.80	12.20	12.60	13.80	16.60	20.00				
12	Avg. Sheath thickness MM	1.00	1.10	1.10	1.10	1.30	1.40				
	App. Overall Dia MM	11.20	12.60	13.00	14.30	17.20	20.70				
14	Avg. Sheath thickness MM	1.10	1.10	1.10	1.20	1.30	1.40				
	App. Overall Dia MM	12.00	13.30	13.70	15.20	18.10	21.80				
16	Avg. Sheath thickness MM	1.10	1.20	1.20	1.20	1.40	1.50				
	App. Overall Dia MM	12.60	14.20	14.60	16.00	19.30	23.20				
19	Avg. Sheath thickness MM	1.10	1.20	1.30	1.30	1.40	1.50				
	App. Overall Dia MM	13.20	14.90	15.60	17.10	20.30	24.50				
24	Avg. Sheath thickness MM	1.20	1.30	1.30	1.40	1.40	1.50				
	App. Overall Dia MM	15.60	17.60	18.20	20.20	23.80	28.80				
30	Avg. Sheath thickness MM	1.30	1.30	1.30	1.40	1.40	1.50				
	App. Overall Dia MM	16.80	18.70	19.30	21.50	25.70	30.60				
	Max. Conductor Resistance in OHm/Km at 20°C.	39.00	26.00	19.50	13.30	7.98	4.95				
	Recommended Current Rating in AMP	4	7	11	14	19	26				

THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION


AS per IS 694

Area in Sq. mm	Construc- tion No./Dia	Cond. Dia. in	Max. DC resist- ance	Insulation thickness nominal	Core dia.	70000	Sheath thickness in mm nominal			Overall Diameter in mm approx.		
	NO./DIA	mm	Ohm/Km at 20°C	mm	mm	2 core	3 core	4 core	2 core	3 core	4 core	Amp.
0.50	16/0.2	0.94	39.00	0.60	2.20	0.90	0.90	0.90	6.20	6.60	7.20	4
0.75	24/0.2	1.20	26.00	0.60	2.50	0.90	0.90	0.90	6.80	7.20	7.90	7
1.00	32/0.2	1.34	19.50	0.60	2.60	0.90	0.90	0.90	7.00	7.50	8.10	11
1.50	*30/0.25	1.64	13.30	0.60	2.90	0.90	0.90	1.00	7.60	8.10	9.00	14
2.50	**50/0.25	2.08	7.98	0.70	3.50	1.00	1.00	1.00	9.00	9.60	10.50	19
4.00	56/0.3	2.61	4.95	0.80	4.30	1.00	1.00	1.00	10.60	11.30	12.40	26

Area in Sq. mm	Construc- tion No./Dia	Cond. Dia. in mm	Max. DC resist- ance Ohm/Km	Insulation thickness nominal at 20°C	Core dia. mm	Sheath thickness in mm nominal			Overall Diameter in mm approx.			Current Rating Amp.
						2 core mm	3 core	4 core	2 core	3 core	4 core	Allip.
6	84/0.3	3.50	3.30	0.80	5.10	1.15	1.15	1.40	12.60	13.40	15.20	33
10	140/0.3	4.60	1.91	1.00	6.60	1.40	1.40	1.40	16.00	17.00	18.80	45
16	126/0.4	6.00	1.21	1.00	8.00	1.40	1.40	1.40	18.80	20.10	22.20	60
25	196/0.4	7.60	0.780	1.20	10.00	2.00	2.00	2.00	24.00	25.60	28.20	75

THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION

CONSTRUTION OF A TYPICAL INSTRUMENTATION CABLES

<u>PARAMETERS</u>

Conductor : Electrolytic copper (Bare/Tinned, Solid/ Multistranded)

Insulation: Type A, B, C compound as per IS: 5831 (rated upto 70° C to

85° C), Polyethylene, FR, FRLS,

Types: Pair/ Traid/ Quad

Laying : Cores are laid up in sequence with a required pitch

Shielding : Aluminum tape with 0.5 Sqmm drain wire (for individual/

overall shielding) OR ATC Braided

Armouring: Galvanized steel wire/ strip

Sheathing: Grade Type ST – I / ST– 2 (HR, FR, FRLS)

Get in Touch with Us

Contact Us:

Mr. Laxmikant Laddha: 09822332340

Giriraj Laddha: 09881245431

Rahul Laddha: 09881245432

Lighting Store:

583, Narayan Peth, Jaldhara Society, Near Kanyashala, Pune-411030

Phone: (020) 24455293, 24461156, 24481583, 24486306, 24492424

353/2, Shaniwar Peth, Ramanbaug Co-operative Hsg Society, Near Ramanbaug School, Pune-411030.

Phone: 098812 45432

raj_electricals